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ABSTRACT

A new condition is shown to be equivalent to the other conditions of the Kreiss Matrix

Theorem for power bounded families of matrices. This new condition is important for the

application of the theory of pseudo-difference operators to stability estimates for variable

coefficient finite difference equations. As an example of the usefulness of this new condition,

we use it to prove stability of the leap frog scheme for hyperbolic equations with variable

coefficients.
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SIGNIFICANCE AND EXPLANATION

The existence of a symmetrizer is a vital part of the new stability estimate obtained

in !10] for general variable coefficient linear finite difference equations. It allows a Girding

inequality for pseudo-difference operators to be utilized and is the finite difference analogue

of the symmetrizer for partial differential equations. The theorem which appears in this

paper links the existing necessary and sufficient conditions for the power boundedness

of a family of matrices to the existence of a matrix symmetrizer. An example is given to

indicate how the new condition allows stability estimates to be obtained for finite difference

schemes which do not satisfy the hypotheses of previous stability theorems.
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AN EXTENSION OF THE KREISS MATRIX THEOREM

Bruce A. Wade

and

John C. Strikwerda

The Kreiss Matrix Theorem 121 gives necessary and sufficient conditions for the power

boundedness of a family of matrices. The power boundedness property is related to the

stability of variable coefficient finite difference equations which, in turn, is related to con-

vergence. In order to obtain stability and convergence estimates for variable coefficient

finite difference equations it is useful to introduce a new condition in the Kreiss Matrix

Theorem. This condition involves the construction of a matrix called a symmetrizer.

The symmetrizer is used in 1101 to obtain stability estimates for variable coefficient

finite difference equations through the use of a Girding inequality and the theory of pseudo-

difference operators. A similar theory of pseudo-difference operators for regular elliptic

systems of difference equations was developed by Bube and Strikwerda in i1). Michelson

61 has also developed a theory of pseudo-difference operators. The matrix constructed is

called a symmetrizer because it is the finite difference analogue of the symmetrizer for the

Cauchy problem in the theory of partial differential equations. We include an example of

* the application of the new symmetrizer condition to the proof of the stability of the leap

frog difference method for variable coefficient problems.

Tadmor 9' generalized the Lax-Wendroff 5 sufficient condition for stability. The

. Lax \Vendroff version of the theorem involves the numerical radius of the amplification

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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matrix while Tadmor's condition uses a generalized numerical radius. The generalized

numerical radius condition was shown to be necessary and sufficient for the power bound-

edness of a family of matrices. We show how the new symmetrizer condition is related to

Tadmor's condition. In the interest of showing this relationship, we include more implica-

tions in the proof than are necessary to establish the theorem.

Consider the vector space Cm and let A and fl be m by m complex matrices with f0

Hermitian and positive definite. Define, for x, y E C m ,

'X, Y) := X , - I 1 (x,x).

and

XIA :=- sup

OG IIx-H

Define the D-numerical radius of A to be

ro(A) := sup

The real part of a matrix A, namely (A' - A), where denotes the conjugate transpose,

will be denoted by R.A. Given two Hermitian matrices A and B, one says that A < B if,

for each z E C"'.

(Az, x) < (Bx, z).

Given an infinite family of rn by m complex matrices denoted by F. the following the-

orem contains four known equivalent conditions as well as the new symmetrizer condition.

The original version was given by Kreiss in 2.
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Theorem (Kreiss Matrix Theorem)

The following are equivalent:

A) There exists CA > 0 such that for all A r .7 and for each n E Z+, IIA'!I <_ CA.

R) There exists CR > 0 such that for all A e Yand for all Izi > 1,

!I(zI- 4)-"! < CR(Iz;- 1)-_

H) There exists CH > 0 such that for each A i. I there is a positive definite, Hermitian

matrix H which satisfies C- 1 1 < H < CHI and A"HA < H.

N) There exist CN > 0, Co > 0 such that for each A E 7 there is a positive definite,

Hermitian matrix N, called a symmetrizer, which satisfies C - 'I < N <_ CN and, for

each Izi > 1.

R N(1 - z-'A)) Co(1 - Lz- 1)I.

fl) There exists C2 > 0 such that for each A E .7 there exists a positive definite, Hermitian

matrix 11 which satisfies C 1 I < fl < CnI and, for all n E Z4., r0 (An) < 1.

The original paper of Kreiss '21 included the conditions A. R, H and another condition

which is commonly called S. We omit the condition S for brevity. The condition D was

introduced by Tadmor in 9 . The condition N, which will be called the symmetrizer

condition, is new. Although the symmetrizer condition may appear to be weaker that

Tadmor's generalized numerical radius condition, we show directly that these conditions

are equivalent, thus elucidating the relationship between them.

3



PROOF:

The proof that condition A implies the resolvent condition R and that R implies H are

contained in !2]. Kreiss proved that R implies H by first proving an intermediate condition,

which he called S. This is the most difficult part of the theorem and involves estimates on

the behavior of the eigenvalues, especially for those near the unit circle. Tadmor proved

in [9 that 11 implies A by utilizing the generalized Halmos inequality, rn(A ' ) < (rn(A))",

(see i8,91), and the inequality lAp. < 2r,(A). This last inequality can be proved by writing

A as the sum of its Hermitian and skew parts and noting that the spectral radius of a

normal matrix equals its spectral norm.

We now prove that the symmetrizer condition is equivalent to the others.

We begin by proving that condition H implies the symmetrizer condition. N. Assuming

H holds. let A E .7 and let H be the corresponding positive definite Hermitian matrix.

Expanding the relation

0 < (I - z-A)' H (I- z-'A),

we have
0 _* H - 2R (z-'HA) + z - 2A'HA

<H - 2W (z -'HA) + :zI- 2H

2.R (HoI - z-'A)) + (Iz - 2 -- ) H.

Thus
~ 1- z, 1)H < - (I -,zK,)H

2- 2 "

< (n(I- Z-1A)),
and the symmetrizer condition follows with N taken as H.

The symmetrizer condition. N. implies f1. To see this. note that if N holds then

R (N( - z-'A)) > Co (1 - 'z -') I

>0.

4
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This implies that

~R(N) R (Nz -A), for all !z >1.

Given x E C', choose z such that

3!R((NAx, z)z-') - jNAx. x)

Therefore,

INA x .)< 'Nx, x,, for all x EC m

which implies rN(A) :5 1. This, together with the generalized Halmnos inequality i8,9,

proves that condition 0l holds.

Conversely, assume the condition 0l holds. We will show that this implies the syrn-

metrizer condition, N. This part of the proof is included only to show the relation between

the symmetrizer condition and Tadmor's generalized numerical radius condition. We have,

for x E C'm .
~R41 (I - z-') x,x) % Ox~,x) - Rz-fl.x,x)

' flx,x) - IzK- 1 (01Ax,x\,

> Cfx,x) - jz;7(nz~x)

Coj (i; -') (x, X).

This implies the symmetrizer condition with N fl. and CN :=Co, and CO Cl

Trhe syminetrizer condition is also closely related to the resolvent condition. If condi-

tion N holds. then
CO (1 -' J lI (N(J - z'lA)),

1; ! NI - 1 A

CN'l I -'

'Ile
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where the last inequality follows from observing IN! = wI(N) -. CN. and the first follows

from the Cauchy-Schwarz inequality. This is easily seen to be equivalent to the condition

R. The proof uf the theorem is complete.

We now present a simple example which illustrates the use of the symmetrizer condi-

tion in proving the stability of variable coefficient finite difference equations. The methods

of Kreiss '31, Parlett 171 and Lax and Nirenberg !4] do not apply to the difference scheme

given here: however, the symmetrizer condition can be used to obtain the stability esti-

mate. We make use of the calculus of pseudo-difference operators in the form developed

by Bube and Strikwerda ;1 and Michelson [W. A complete presentation of the applica-

tion of the symmetrizer condition to stability and convergence estimates of general finite

difference equations along with applications will be presented in 10.

Consider the variable coefficient initial value problem

ut = a(x,t)ux, t>O, xER

U (x,O) = Uo(X),

where u,(-) - L 2 (R) is a scalar valued function and a(x,t) is constant outside of a compact

set. We approximate the partial differential equation by the leap frog difference scheme
i'+ -Vr =n-n 4 1  - ), nI = 1, m15 _ Z

(I := uo(mh) (1)
.1  n 10-vO I

M :=vm 2 ,m.n (t'O4I - Vmi>

where am., := a(,nh. nk) and A := k/h is constant. We assume that sup,, A!a(x,t)I < 1.

Define the discrete function

A (1/2k)vm. if n= -1;
, (112k)(v- 2  - ))- if n = 0

. else,

6
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then it is easy to check that the difference equation (1) is equivalent to

n+1 -"-I n_ nv., E Z

._Aa, (V,, - 1 ) + 2kA nm E z, (2)

where we now consider the difference equation as being for all time levels and take vn to

be 0 if n is negative. Note that A' essentially acts as a "delta function"and its nonzero

elements are of order 1/k.

We now reduce this difference scheme to a two level scheme. If we define

(vn*I)

and

Fm: (2Ar)

equation (2) may be written as

W = -(I,-)W" - kFn,. n,mE Z (3)

where

G(m, n) :=(m 1 T 0),

and T is the translation operator in x.

The symbol of the difference operator, G, is defined to be

( 2Aia,.,sin ch I1< 7r

We note that for each value of (in, n) the eigenvalues of G(m. n. are on the unit circle, in

particular the scheme is nondissipative. Therefore. the method of Kreiss '3' and Parlett '7

for proving stability does not apply. The sharp Garding inequality of Lax and Nirenberg

7 ~~



14i also does not apply since the norm of the symbol is not bounded by I. We will utilize

the symmetrizer condition in order to prove that this difference scheme is stable.

The theory of pseudo-difference operators is employed in the context of the discrete

Sobolev space

H ,h = {: hZ x kZ --+ R (cs) E L 2 (Dh

where Dh (.r)Ir , s =j -+ Ur, with r? ? ro > 0, and i(C,s)

denotes the discrete Fourier transform in space and Laplace transform in time of vn defined

by
s)hk c

.-- e-snk- t mh n

27r &__
nm-'= - c

The corresponding norm is

It;, hk ie-2 t?7~ ~ ~ h•,I M

mn ,v -cc

See Michelson -6, or Wade 101 for details on the pseudo-difference operator theory as well

as the discrete transform and discrete Sobolev space.

Consider the family of matrices

f: {e- ik(m,n, ) : m, n 7 Z, *CI < -},

where r7,:, is any positive number. Since the eigenvalues of every element of Y are distinct.

inside the unit circle and uniformly separated, it is clear that the resolvent equation holds.

Therefore, there is a constant Ct, > 0 such that for each element of Y" there is a symmetrizer,

N(m. n, c). which satisfies

S(A(m.n. e)( -e- k,(m.n. c)) C,, (I - ne k) 1. r > ?r0 >0. (4)

8



We now apply a Girding inequality for pseudo-difference operators. (see !1, *6, or

[101). The GArding inequality essentially says that the condition (4), which holds for the

symbol of the difference operator, is also true for the variable coefficient operator modulo

lower order terms. We have

C7 (h < Rk- (WN (I - G(n,m)S) h 1.h

where S is the shift operator in t.

By choosing 77c larger, and the constant Co smaller, and using that W satisfies the

equation (3), this implies

k Y7.l < R (W, N F), h _< C , h, 7=.

The last inequality follows from the fact that the grid function F is supported on only two

time levels. In terms of the original variable t,, this is

( l e-" ) , .,10 i2(17,h < Ch ' V (6)
kv~ E rI M! r 17o > 0,()

mE Z

for some constant C.

The estimate (6) is equivalent to the standard notion of stability. By 'standard notion

of stability' we mean the definition which requires the space norm of the solution at any

time level n to be bounded by a constant depending on nk times the space norm of the

initial data of the difference scheme. The reader is referred to the paper of Bube and

Strikwerda 1 for a similar estimate which uses a Girding's inequality for elliptic systems.

Finally we comment on the reason that the symmetrizer condition allows estimates

for more general difference schemes. The previous methods for proving stability involved

9



the conditions H or fl. These conditions involve nonlinear operations on the elements of

the family of matrices, while condition N is essentially a linear operation on the elements

of the family. The condition H contains the term A"HA and the condition 0 contains

the absolute value of (fl.,-), both of which are nonlinear operations on the matrices in the

family. The symmetrizer condition utilizes only the multiplication of elements of the family

by a matrix, in addition to the operation of taking the real part of a matrix. The use of

only linear relations allows for greater flexibility in the application of Girding inequalities.

Estimates for more general schemes as well as other results are contained in jlO].

I%'V°
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